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SUMMARY

1. Reference (i.e. least or minimally impaired) sites can provide important information

about the expected range of biological metrics and can be used to establish impairment or

non-impairment of a test site. A problem with using reference data is that biological

metrics are affected by natural conditions. We present an approach that uses local

information to adjust for natural conditions and a method for statistically evaluating

condition at a test site using biological metrics.

2. Our method consists of four steps: selection of a distance measure to find neighbours of

a test site, selecting natural variables to measure the distance, selection of the number of

neighbours and calculating a scored metric.

3. We use a simulated example to illustrate when the nearest-neighbour approach

improves classification of sites as reference or not reference.

4. Using a set of data from the Mid-Atlantic Highlands, we show that the nearest-

neighbour method improved on the ability of a regression approach to correctly classify

test sites known to be from a non-reference group without affecting the ability to correctly

classify test sites known to be from the reference group.

Keywords: Benthic Assessment of Sediment, multimetric, River Invertebrate Prediction and Classi-
fication System, standards assessment, stressor–response

Introduction

Reference locations (locations of least or minimal

impairment) provide valuable information that can be

used to describe reference conditions, to evaluate the

impairment of sampled sites (e.g. stream segments of

a particular size) and to assess recovery of sites listed

as impaired (Burton, Chapman & Smith, 2002; Bailey,

Norris & Reynoldson, 2004). Reference condition

analysis forms the basis of several environmental

assessment methods or models including the River

Invertebrate Prediction and Classification System

(RIVPACS) (Wright et al., 1984; Clarke et al., 1996),

the Benthic Assessment of Sediment (BEAST) (Reyn-

oldson et al., 1995), the Australian River Assessment

System (AUSRIVAS) (Nichols et al., 2000; Simpson &

Norris, 2000), the test site analysis (Bowman &

Somers, 2005; Bowman et al., 2006), the multimetric

approach (Barbour, Stribling & Karr, 1995) and the

Assessment by Nearest Neighbor Analysis (ANNA)

system (Linke et al., 2005) and can be used with

biological, chemical or other types of data (Reynold-

son, Smith & Bailer, 2002).

An important recognition in the use of reference

conditions for evaluation of a test site is that a test site

may be different from some reference sites even when

this test site is indeed from the set of reference

sites (Chessman & Royal, 2004). Hence, quantities

(e.g. mean and standard deviation) calculated from

the reference metrics may not represent what is

expected for the test site. For example, the mean of a
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metric at high sites may be different from the mean of

that metric at low sites. A test site at high elevation

would be best evaluated using high elevation refer-

ence sites. Recognising the potential for differences

among samples within the reference set, Wright et al.

(1984) and Chessman (1999) recommended the use of

subset methods or adjustment methods to account for

potential differences due to natural factors.

In the subset approach, methods such as cluster

analysis are used to find groups of similar reference

sites. Approaches such as RIVPACS and BEAST use

subset methods to group reference sites, resulting in

reference data groups that are expected to have

similar biological characteristics. Creating groups of

similar reference sites should reduce variation in

measurements and result in more sensitive biological

evaluation of new sites.

In the adjustment method, regression is used to

model the relationship between predictor variables

unrelated to anthropogenic stress and the biological

variables. These regression relationships are developed

using only the reference sites but are applied to the test

site data. The predicted value of a biological variable

associated with a test site then represents the reference

mean adjusted for the values of the predictor variables

measured at the test site (Chessman, 1999). Deviation

from the predicted value is a measure of difference

from reference condition. Chessman (1999), for exam-

ple, uses a regression model to predict the biological

metric at a test site from reference sites and then uses

the predicted values along with tolerance values to

obtain an expected metric value. To evaluate a test site,

the observed metric value is then compared with the

expected metric value. Yuan & Norton (2003) use

regression-based scaling of benthic macroinvertebrate

community metrics to evaluate stressor–response rela-

tionships in the Mid-Atlantic Highlands. They fit a

linear regression model of the response metric of

interest on selected predictors using data from a large

collection of reference sites. Using this model, they

obtain a prediction of the metric at each test site

assuming the test site was from the reference group,

and an associated estimate of the error in this predic-

tion. The standardised difference between observed

and predicted is then used to measure deviation from

reference. Standard regression methods are global

methods in that the regression model is assumed to

hold across the whole set of reference sites. Methods

such as BEAST are semi-global in the sense that the

properties of the reference set are constant within

groups or clusters of reference sites.

An alternative method, used in ANNA, uses a local

set of neighbours to a test site to determine the

observed and expected taxa richness. We propose a

local scaling method for biological metrics or multi-

metrics, which is similar to ANNA, in that a subset of

reference sites is used for scaling. For each biological

metric and test site, there will be a set (possibly

different for each test site) of reference values that is

used to compute the mean and variance for scaling.

The scaled biological metric is then used to evaluate

the test site. The neighbours are chosen based on

proximity to the test site using a set of predictor

variables chosen by the user.

The advantage of scaling and evaluating by local

rather than global reference conditions is that the

reference distribution for a particular test site will be

more similar to that site in the values of the selected

predictor variables. The decrease in heterogeneity

should lead to decisions that are more accurate. A

difficulty with using regression models to reduce

variability in biological data is that the variance

explained (i.e. R2) is often small when models are

fitted to reference site data. Regression approaches

require assumptions (linearity and homogeneity) that

may or may not be valid on a global (i.e. over the

whole range of the predictors) scale. Local scaling and

evaluation permits a non-linear global relationship to

hold between the predictors and response. Although

the method we describe in more detail below is

similar to that used in ANNA, ours is local. The

ANNA model uses a nearest-neighbour-based meth-

od that requires a global assumption of linearity

between chosen environmental variables and axis

scores from a non-metric multidimensional scaling.

ANNA’s nearest-neighbour distances are weighted by

coefficients from multiple linear regression models

applied to observations from all the sites. By focusing

on metrics that are simply derived from biological

count data (e.g. taxa richness or Simpson’s diversity

measure), our method does not require a global

multivariate step.

All of the above methods or models evaluate a test

site by comparing what is observed at a test site to

what is expected or predicted at that site based on

reference conditions. We refer to this process as

scaling of the test site. We assume the degree of

directional difference from the numerical condition at
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reference sites is related to the degree of impairment

of a test site. While there may be other explanations

for these differences, a large difference is typically

viewed as indicative of a potential problem site. There

are a variety of ways to calculate this difference.

Evaluation of a test site using RIVPACS, AUSRIVAS

and ANNA is based on the ratio of the observed and

expected (O/E) number of selected macroinvertebrate

taxa and small values imply impaired conditions.

BEAST declares a test site as potentially impaired if its

biological distance to the centre of the reference data

is larger than the distance from reference sites to their

centre [see Reynoldson et al. (1995) for details]. By

reference metric scaling, we refer to a general set of

methods for adjusting or normalising a metric

(or multimetric) to reference conditions. Its purpose

may be descriptive (e.g. to produce a cumulative

distribution for reference sites) although the most

common use of scoring is to identify potentially

impaired sites.

Reference scoring usually involves adjustment by

expectation and/or variance using a linear approach.

When O/E is used to evaluate a test site, the scoring of

the observed number of selected taxa is by expecta-

tion. The BEAST method uses both expectation and

variation in its multivariate distance calculation.

Methods used for scoring in statistical applications

are often based on some form of standardisation. We

distinguish between two such types, based on how

uncertainty is accounted for in the formulas and the

purpose of the standardisation. Standardisation for

descriptive purposes involves subtracting the refer-

ence mean and dividing by the reference standard

deviation to produce the scored metric. This is

commonly used to assess where an observation lies

relative to other observations and to describe the

biological population after adjusting for reference

conditions. Thus, the scored metric is adjusted for

expectation then scaled by the standard deviation

calculated from the reference sites using

scored metric ¼ test metric� reference mean

reference standard deviation
: ð1Þ

It is important to note that the information from the

test site is not included in the calculation of either the

expectation (i.e. reference mean) or the standard

deviation. A scored metric at a test site can be

interpreted as the number of standard deviations

above or below what is expected from the information

in the reference sites and hence may be used to describe

the condition of a test site relative to the reference set.

An example using this approach to develop a stream

health index is given in Chiu & Guttorp (2006).

An alternative to scoring for description views the

scoring as a prediction problem and uses a prediction

variance rather than an estimated variance of refer-

ence conditions, i.e.

scored predicted metric

¼ metric� reference predicted metric

reference prediction standard deviation
: ð2Þ

Equation (1) is most useful for descriptive purposes,

while (2) is useful for testing hypotheses such as if a

site has biological conditions that are different from

reference conditions. An important difference

between the two methods is that prediction based

scoring views the test site as a new observation and

the variance that is calculated includes uncertainty

associated with the predicted value. This approach is

common in methods such as regression analysis to

evaluate if new observations are consistent with the

regression model. See Montgomery, Peck & Vining

(2006) for a discussion of prediction versus descrip-

tion in the regression setting. Kilgour, Somers &

Matthews (1998) suggest using the square of the

scored predicted metric as a way of evaluating if a test

site is in the normal range of reference conditions.

We refer to the situation where all available

reference sites are used in eqns (1) and (2) as the

‘null’ model approach. These null model equations

are given in Table 1 (formulas (4) and (5)).

In this paper, we describe a method that scores the

value of a metric at a test site using the average

response and standard deviation of the responses

observed at reference sites that are the nearest-

neighbours of the test site. Nearest-neighbours are

chosen based on the proximity of the test site to

reference sites using a set of predictors chosen by the

user. Neighbour distances can be based on a combi-

nation of continuous and categorical predictors. Using

a simple simulated data set, we highlight potential

advantages of the method relative to the regression

and ‘null’ approaches. We also evaluate the nearest-

neighbour method on a data set from the Mid-Atlantic

Highlands. We conclude with discussion and areas for

future work.
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Methods

In our methodology, the relevant data for scoring and

testing are one or more biological metrics and poten-

tial predictors of the metrics from N reference sites

that are to be used to describe reference sites.

Examples of metrics include taxa richness or Epheme-

roptera, Plecoptera, Trichoptera richness (EPT rich-

ness) as well as multimetrics. The predictors are used

to explain and hence reduce variation in reference

conditions, not to explain why a test site might be

considered impaired. Examples of reference predic-

tors might include altitude, catchment area, time of

sampling (e.g. spring or autumn) and whether the

biological sample comes from a pool or a riffle.

Our approach is based on the evaluation of individ-

ual metrics or a multimetric index. Thus, at selected test

site i we observe a response metric yi and p predictors,

xi1, xi2,…,xip. The k nearest-neighbours of site i are those

k reference sites that are the ‘closest’ to (xi1, xi2,…,xip)

according to a chosen distance measure. These k

nearest-neighbours of site i collectively yield k values

of the metric that form the neighbourhood reference set

for site i. The objective then is to score the test site

metric, yi, using this neighbourhood reference set.

Our approach involves a four-step process:

1. Choose a distance measure to determine prox-

imity of reference sites to the test sites.

2. Select variables from potential reference predic-

tors.

3. Select k, the number of nearest-neighbours to use.

4. For each test site, calculate the scored metric

using the mean and standard deviation of the metric

at the reference neighbour sites.

Details on the steps are provided below. In appli-

cations, we often will not know the best predictors or

optimal k so we describe an approach for selection of

the predictors and k that combines steps 2 and 3.

The first step is the selection of a distance measure.

We use the heterogeneous Euclidean overlap metric

(HEOM) of Wilson & Martinez (1997) to measure

distance between sites. To compute the distance, the

predictors are first grouped into continuous and

categorical variables. The HOEM distance, dist (i, j),

between a test site i and a reference site j is given by

distði; jÞ ¼
X

c

jxi;c � xj;cj
rangec

þ
X

g

I½xi;g 6¼ xj;g� ð3Þ

where the first of the added terms is a sum over the

continuous predictors and the second is a sum over

the categorical predictors, rangec is the range of the

cth continuous predictor in the reference dataset, and

I[ ] is equal to 1 if sites i and j have a different value of

the gth categorical predictor, and is equal to 0

otherwise.

The first term in the HEOM distance represents the

total contribution of the continuous predictors.

Although standard deviation could be used in the

denominator (Smith et al., 2003; Yuan & Norton,

2003), we used range to normalise the contribution

Table 1 Formulas for descriptive and

predictive scoring of metrics Model Type of scoring Equation Test Distribution

Null or mean Descriptive yM
i;d ¼

yi��yR

sR
ð4Þ tN)1

Predictive yM
i;p ¼

yi��yR

sR

ffiffiffiffiffiffiffiffiffiffiffi
1þ1=N
p ð5Þ tN)1

Regression Descriptive y
Reg
i;d ¼

yi�ŷi;reg

sreg
ð6Þ tN)2

Predictive

(single predictor)

y
Reg
i;p ¼

yi�ŷi;reg

sreg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Nþ
ðxi��xÞ2PN

j¼1
ðxj��xÞ2

r ð7Þ tN)2

Nearest-neighbour Descriptive yNN
i;d ¼

yi��yi;k

si;k
ð8Þ tk)1

Predictive yNN
i;p ¼

yi��yi;k

si;k

ffiffiffiffiffiffiffiffiffiffi
1þ1=k
p ð9Þ tk)1

In the equations, yi represents the value of the metric at site i. The second subscript on y

refers to either descriptive (d) or prediction (p). Superscripts M, Reg, NN refer to Null/

Mean, regression and nearest-neighbours respectively. In the equations, R refers to

reference, N is the total number of reference sites, xi is the value of the predictor at site i,

and k is the number of nearest-neighbours. The mean of the metrics is denoted using �y

and the mean of the predictor is �x: The standard deviation is denoted using s. Critical

values are obtained from t-distributions with different degrees of freedom.
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of an individual predictor to the overall distance to be

in a 0–1 range which is commensurate with the

contribution of the categorical predictors. Transfor-

mation of the predictors is often useful when using

the range to avoid effects from skewness of observa-

tions. One advantage of HEOM is that it allows both

continuous and categorical predictors to contribute to

the distance between any two sites. HEOM can also be

adjusted for ordinal data. Although the name of this

distance measure suggests the use of Euclidean

distance for continuous predictors, Manhattan dis-

tance is used for computational simplicity in Wilson &

Martinez (1997) and here. Other distance measures

might also be acceptable.

The second and third steps involve the selection of

reference predictors and number of neighbours. The

choice of predictors and k is important and leads to

better metric prediction and variance estimation. In

practice, it may be possible to select these variables

using expert knowledge. However in some cases

detailed information about individual sites is not

available and we may want to choose the predictors

and k using an objective statistical approach. Such an

approach follows: select a range of values for k (from 1

to N). For each value of k selected, run a leave-one-out

subset selection method to identify the subset of the

predictors that minimise the mean squared error

(MSE) of the predicted metric at the reference sites.

That is, for each reference site in turn, and for each

candidate predictor, apply the nearest-neighbour

scoring method using that predictor in the distance

measure and the remaining N)1 reference sites to

characterise reference conditions. Determine the MSE

of the predicted metrics at the N reference sites and

select the single predictor that minimises the MSE.

Continue to add predictors until the MSE is not

reduced. The MSE measures the closeness of the

predicted metric value to the true metric value and a

small MSE would suggest low prediction bias and low

uncertainty. The process results in a two-way table of

MSEs for predictors and values of k. The user should

then choose the value of k and the associated subset of

predictors for which the MSE of the predicted metrics

on the reference sites is at its minimum. The number

of neighbours need not be the same for every metric of

interest. Similarly, when the assessment involves

multiple metrics, a different subset of predictors

may be selected for different biological metrics or

the same set used for all metrics.

Note that using a categorical predictor in the

variable selection procedure may be complicated

when k is small since there may be multiple sets of

sites with the same level of the categorical predictor.

We therefore only consider adding the categorical

predictor after a continuous predictor has been inclu-

ded. Following selection of variables and k, distances

between sites are calculated.

Finally, in the fourth step, to obtain the scored

value of the metric at a test site i, we calculate the

HEOM distance between the chosen predictors at

test site i and every individual reference site. Next,

find the k nearest-neighbours and compute the

mean and standard deviation. Then score the metric

using either eqn (1) or eqn (2) with the nearest-

neighbour statistics (see Table 1, formulas (8) and

(9)). The size and direction of the scored metric may

indicate the degree of impairment or concern for a

test site. If we call metrics that increase with

increased stress positive metrics then a scored

positive metric value above the critical value from

a t-distribution with k ) 1 degrees of freedom and

upper tail probability a (hereafter denoted by tk)1(a))

would signal possible impairment. Similarly, for

metrics that are expected to decrease with increas-

ing stress, a scored metric value below the criterion

of tk)1(1 ) a) would signal possible impairment.

(In most situations, these would result in an

approximate criterion of ‘above 2’ for positive

metrics and ‘below )2’ for negative metrics.) This

rule is somewhat similar to a percentile rule (see

e.g. Clarke et al., 1996) and corresponds to the

‘reference interval’ approach used in medical

diagnostics (Altman, 1991).

The approach in eqn (2) suggests a more formal

statistical evaluation of the test site and divides by the

standard deviation of prediction. To formally test for

impairment we would score the metric and compare

its value with the critical value from a t-distribution

with k ) 1 degrees of freedom and upper tail probab-

ility a or 1 ) a depending on whether the metric is

positive or negative.

In the comparisons given below, the metrics are

scored using the nearest-neighbour, regression and

null model approaches. For the nearest-neighbour

method, the calculations are based on predictive

scoring of the metrics using the mean of the k

nearest-neighbours and the corresponding standard

error in eqn (9). For the regression approach, the
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predictive scored metrics at test sites are found using

the predicted value from a regression model and the

corresponding standard error using eqn (7). The

regression-based equations are slightly different from

that used by Yuan & Norton (2003) who divided by

the standard deviation of the regression residuals. The

table gives the t-distribution for testing with a single

predictor; testing for the general case would use a

critical value for a t-distribution with N ) r degrees of

freedom where r is the number of parameters in the

regression. Null model calculations are based on eqn

(5) and use all reference sites.

Methods of Evaluation

We evaluated the nearest-neighbour method for

different k and compared it with the regression and

null methods using two criteria. If useful, the nearest-

neighbour method should produce near zero values of

the scored metrics when applied to the reference set

(i.e. a reference site should be similar to its nearest-

neighbour reference sites). The method should also

produce large values of the scored metrics for stressed

test sites. Our comparison for the reference sites is

based on treating each reference site as a potential test

site and then classifying the site. The scored metric for

the held-out reference sites should produce better

estimates of how well the method would work on new

reference sites.

The first criterion evaluates the prediction ability of

the methods on the reference site data. For both the

nearest-neighbour and regression approaches, we

calculated the MSE of the predicted metrics, obtained

for the held-out reference sites. For regression scoring,

bias is based on the prediction from a regression

equation and MSE is given by the average prediction

variance. If overall prediction at reference sites is

better, the MSE at these sites should be lower.

The second evaluation procedure is relevant when

classification of sites as ‘not impaired’ or ‘impaired’ is

of particular interest. We illustrate assessments based

on standardised metrics by classifying a positive

scored metric at a test site as indicating ‘impairment’

if its value is greater than td.f.(a ¼ 0.05) where the

degrees of freedom (d.f.) are as given in Table 1.

Similarly, the score for a negative metric denotes

impairment if it lies below td.f.(1 ) a ¼ 0.95). To

illustrate the ability of the regression and nearest-

neighbour approaches to distinguish between refer-

ence and potentially impaired sites, we use a set of

data where low pH sites are treated as the potentially

impaired sites. If successful, the nearest-neighbour

method should have better classification than the

regression method.

Data

To illustrate a situation where the nearest-neighbour

method is superior to a regression scoring approach,

we simulated a reference data set of 88 sites with

varying mean and variance. The predictor variable, x,

was generated from a uniform distribution with

approximate range 1–5. We generated 88 values of

the metric from a normal distribution with mean that

assumed an underlying quadratic relationship with

the predictor (i.e. y ¼ 0.25x2 ) x + 6) and standard

deviation (SD) that increased from 0.3 to 1.0. (The first

22 values had SD of 0.3, the next 22 had SD of 0.4, the

next 22 had SD of 0.5, the next 11 had SD of 0.75 and

the final 11 values had SD of 1).

To illustrate the method further, we used the

Environmental Monitoring and Assessment Program

(EMAP) data collected in the Mid-Atlantic Highlands

(MAHA) [see Klemm et al. (2002) or Yuan & Norton

(2003) for more extensive discussion of the data].

Yuan & Norton (2003) investigated the sensitivities of

six biological metrics to anthropogenic stressors in the

Mid-Atlantic Highlands region and we study the

same metrics. Three of these metrics are considered

positive and three negative in relation to increased

stress. The proportional abundance of tolerant taxa of

aquatic macroinvertebrates (abbreviated to TOLR-

PIND), tolerant taxa richness (TOLRRICH) and the

proportional abundance of the three most abundant

taxa (DOM3PIND) are positive metrics while Ephe-

meroptera richness (EPHERICH), Plecoptera richness

(PLECRICH) and total taxa richness (TOTLRICH) are

negative metrics.

The sites in this dataset were classified as reference

or non-reference based on values of gran acid

neutralising capacity (ANC), chloride (CL-), sulphate

(SO4¼), total nitrogen (NTL), total phosphorus (PTL)

and total rapid bioassessment protocol habitat score

(RBP). Yuan & Norton (2003) give a detailed descrip-

tion of the criteria for a reference site developed by

Waite et al. (2000). Using the criteria for reference sites

given in their paper, we determined that 87 of the 503

sites in our Mid-Atlantic Highlands dataset were
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reference sites. Although we obtained a slightly

different number of reference sites, the characteristics

of the sites were similar to those reported in Table 2 of

Yuan & Norton (2003). Table 2 gives a summary of the

data.

Potential predictor variables included the continu-

ous variables log-transformed catchment area

(AREA), latitude (LAT), longitude (LON) and RBP,

and a categorical variable representing the Level III

ecoregion for defining neighbours of a test site. We

used the variable selection method described above to

choose the best set of predictors and value of k for the

nearest-neighbour approach. For the regression

approach, we used the variable selection approach

outlined in Yuan & Norton (2003) for selecting the

best subset of predictors in a regression approach.

All analyses were done in R Version 2.0.1 (Ihaka &

Gentleman, 1996).

Results

The simulated reference data are displayed in Fig. 1

along with fitted values for the three methods and

associated intervals assuming the metric is positive.

The solid lines correspond to the fitted values while

the dashed lines indicate the estimated upper error

bar or boundary for reference values. At a specific

value of the predictor variable (x-axis), a test metric

with value above the boundary defined by the interval

would be classified as non-reference. The regression

fit is significant (R2 ¼ 0.57).

Using the error bars to define the boundary for a

decision rule, we obtain four regions (for each

approach we have a region where a test site would

be declared as ‘impaired’ or ‘not impaired’). What

results from the display is that the null model

approach has a constant width band and the regres-

sion approach has a roughly constant width band

while the width of the band for the nearest-neighbour

method varies. In general, the nearest-neighbour error

band is smaller although in some cases it is larger than

the regression band. The large empty area below the

boundary for the null model (left side of graph)

indicates an area where the null model method would

declare a site as not impaired but the other models

would not. The resulting higher misclassification rate

for this area is due to the null model being incorrect in

this region (i.e. the trend in the data is not part of the

model). There is a large area (labelled B) where the

regression method would declare a site as not

impaired while the nearest-neighbour method would

declare impairment. Thus, we expect the regression

method to have a small correct classification rate. In

some cases (C), the nearest-neighbour method classi-

fies the site as not impaired when the regression

method classifies the site as impaired.

Results summarising the leave-one-out MSE for the

MAHA reference data are presented in Fig. 2. When

Table 2 Numerical summaries of all 503 sites in the Mid-Atlantic Highlands dataset and the 87 sites meeting the reference conditions

Minimum First quartile Median Mean Third quartile Maximum

Total rapid bioassessment protocol habitat score )235 )198 )174 )170.5 )149.0 )24

Reference )235 )212 )203 )202.4 )187.5 )181

Catchment area 0.65 2.36 3.03 2.98 3.65 4.77

Reference 1.54 2.34 3.16 3.08 3.78 4.48

Ephemeroptera richness 0 2.5 6 5.8 9.0 18

Reference 0 6.0 9 8.7 11.0 17

Plecoptera richness 0 2.0 3 3.5 5.0 10

Reference 1 3.0 5 5.0 6.5 10

Tolerant taxa richness 0 2.0 3 3.7 5.0 15

Reference 0 1.0 2 2.4 4.0 7

Proportional abundance of tolerant

taxa of aquatic macroinvertebrates

0.00 0.10 0.19 0.23 0.31 1.49

Reference 0.00 0.07 0.12 0.13 0.18 0.42

Proportional abundance of the

three most abundant taxa

0.43 0.65 0.75 0.78 0.88 1.57

Reference 0.45 0.58 0.67 0.70 0.81 1.05

Total taxa richness 1 28 37 36.3 44.5 72

Reference 7 35 43 42.7 51.0 70
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between approximately 20% and 50% of the reference

sites are used, the reference site predicted values for

all metrics have lower MSE than those when k

represents 100% of the reference sites suggesting that

using a subset rather than all of the reference sites

is best. The selected neighbourhood sizes are then k ¼
15 for EPHERICH and DOM3PIND, k ¼ 14 for

PLECRICH, k ¼ 21 for TOTLRICH and k ¼ 20 for

the remaining metrics. AREA was selected for scoring

all six metrics, along with LAT for EPHERICH,

TOTLRICH and DOM3PIND, and LON for DOM3-

PIND. The regression variable selection procedure,

applied to the 87 reference sites selected log catch-

ment area as the only predictor in regression models

for each of the six metrics.

For four of the six metrics, the nearest-neighbours

approach results in a smaller MSE relative to the

regression approach for some interval of k values

(Fig. 2). For EPHERICH and TOTLRICH, the regres-

sion MSE is lower for all k, but is close to the

minimum nearest-neighbour MSE (Fig. 2).

We found that when ecoregion is considered as a

potential predictor the MSE increased for all metrics,

unless k was large. For example, the MSE for TOLR-

PIND when k was 20 with ecoregion considered as a

predictor was 0.00849 and this decreased to 0.00609

with ecoregion omitted. When k ¼ 77 the MSE for

TOLRPIND was 0.00850 with ecoregion considered

and 0.00845 with ecoregion omitted. Use of ecoregion

did not improve the MSE so it was not included in the

nearest-neighbour model.

Table 3 displays results describing the classification

of reference sites. We note that all three methods give

relatively high correct classification rates.

To compare the nearest-neighbour and regression

methods ability to correctly classify potentially

impaired and impaired sites, we considered the

Ephemeroptera richness metric and a non-reference

group defined using pH < 6.0, consisting of 50 sites.

Using the predictive scoring approach with critical

value based on a ¼ 0.025 as the cutoff for impair-

ment, the nearest-neighbour approach using AREA

and LAT and an optimal k of 15 neighbours

classified 56% of these sites (28 sites) as potentially

impaired, compared with 44% (22 sites) for the null

model and 34% (17 sites; R2 ¼ 0.39) using regres-
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Fig. 1 Regression based prediction (pos-

itive slope solid line) and nearest-neigh-

bour prediction with k ¼ 32 (wiggly solid

line) for the 88 simulated reference sites.

Upper confidence limits for the regression

(positive slope dashed line) and nearest-

neighbour with k ¼ 32 (wiggly dashed

line) methods are shown. Predictions and

upper confidence limits for the regression

and nearest-neighbour approaches were

obtained using leave-one-out analysis

with a ¼ 0.05. Points are labelled ‘A’ if

both methods would classify the point as

‘not impaired’, ‘B’ if only the regression

would classify as ‘not impaired’, ‘C’ if

only nearest-neighbour would classify as

‘not impaired’, and ‘D’ if both would

classify as ‘impaired’. The horizontal lines

represent the prediction (solid) and upper

confidence limit with a ¼ 0.05 (dashed)

for the null approach to scoring.
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Fig. 2 Mean squared error (MSE) of the six predicted (unscored) metrics at the 87 reference sites as a function of the number of

nearest-neighbours for the optimal set of predictors. The solid line represents prediction with k nearest-neighbours, and the dashed

line prediction with the regression approach (this is independent of k). The dotted line represents prediction of Ephemeroptera

richness (EPHERICH) and proportional abundance of the three most abundant taxa (DOM3PIND) using k¼15 nearest-neighbours,

Plecoptera richness (PLECRICH) using k¼14, total taxa richness (TOTLRICH) using k¼21, and Proportional abundance of tolerant taxa

of aquatic macroinvertebrates (TOLRPIND) and tolerant taxa richness (TOLRRICH) with k¼20 nearest-neighbours. Values of k

considered represent 8%, 13%, 16%, 17%, 21%, 23%, 24%, 29%, 33%, 37%, 41%, 47%, 50%, 62%, 70%, 81%, 90% and 100% of the 86

reference sites not left out.

Table 3 Percentages of reference sites classified as ‘not impaired’ by the regression and nearest-neighbour methods with critical

values in Table 1 determined with a ¼ 0.05

% of reference sites

Negative metrics Positive metrics

EPHERICH PLECRICH TOTLRICH TOLRRICH TORLPIND DOM3PIND

Regression method 95 97 95 94 95 94

Nearest-neighbour 95 93 95 95 94 93

Null model 95 93 95 97 91 93

Ephemeroptera richness (EPHERICH) and proportional abundance of the three most abundant taxa (DOM3PIND) were scored using

k ¼ 15, Plecoptera richness (PLECRICH) using k ¼ 14, and total taxa richness (TOTLRICH) using k ¼ 21. Proportional abundance of

tolerant taxa of aquatic macroinvertebrates (TOLRPIND) and tolerant taxa richness (TOLRRICH) were scored using k ¼ 20 nearest-

neighbours. The null model uses k ¼ 86.
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sion. Fig. 3 plots the reference and test data along

with the fitted regression and null model lines with

standard error bars. If instead, a ¼ 0.05 is used to

test impairment the regression method will result in

more rejections and a classification rate that is closer

to the nearest-neighbour method (using a 5% test,

the classification rate is 70% for the nearest-neigh-

bour method compared with 58% for regression;

using a 2.5% test, the classification rate is 56% and

34% respectively).

There are three reference sites with zero values of

the EPHERICH metric that potentially affect both the

regression and nearest-neighbour approaches. They

provide some caution that reference criterion should

not be based solely on chemistry. If these three sites

are removed from the reference data set and both

approaches rerun, we find that the nearest-neighbour

approach with AREA and LAT and k ¼ 15 nearest-

neighbours classifies 76% of the 50 test sites as

potentially impaired, 18% more than the regression

approach (R2 ¼ 0.35) and 4% more than the null

model, using an impairment criterion based on a ¼
0.025.

Discussion

We have proposed an approach to adjust the observed

value of a particular biological metric at a test site

using data from the k reference sites that are closest in

selected predictors. Results using a set of data from

the Mid-Atlantic Highlands indicate that this nearest-

neighbour method performed comparably with the

regression approach in correctly classifying reference

sites. Classification of a test set with low pH indicated

a greater number of sites were classified as potentially

impaired using the nearest-neighbour approach.

Simulated data also suggest that the nearest-neigh-

bour approach provides reference distributions for a

test site that are closer to the proper reference

distribution for that site in situations with heteroge-

neous variance and non-linearity. Although the

approach may be viewed as a new method for

evaluation of biological monitoring data, our view is

that the method is a statistical refinement of the

ANNA method. While the data that is collected are

taxa counts, the basis for our analysis is a biological

metric. Methods such as ANNA (Linke et al., 2005),
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Fig. 3 Plot of the reference (R) and test (T)

set data along with the fitted regression

model and prediction based standard

error bars using catchment area (AREA)

as the predictor (dashed lines) and prob-

ability a ¼ 0.05. The solid lines represent

the fitted null model prediction with

standard error bounds based on a ¼ 0.05.
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RIVPACS (Wright et al., 1984) and BEAST (Reynold-

son et al., 1995) take a more multivariate view, either

to summarise the information or to measure distance.

Given the metric we can then make use of local

methods for accounting for natural variables and

making inferences about status of a site. The local

approach makes the method different from other

multimetric approaches.

Our method requires selection of an appropriate

distance measure, predictor variables and the number

of neighbours. While there are many distance meas-

ures that may be used, we chose one that uses

absolute difference divided by range and allows for

categorical as well as continuous predictors. The

distance measure is divided by range to give roughly

equal weight to each predictor. This can increase the

effect of outliers on the choice of nearest-neighbours,

but we feel the benefit of including categorical

predictors, when available, outweighs this potential

problem, as outliers are not as likely to occur in the

reference set as in the test set, especially when

predictors are transformed.

An important step in the method is the selection of

variables to use to find neighbours and the number of

neighbours to use. We assumed that the user could

provide a list of variables related to the biological

measurements. As some of these variables may not be

relevant, a method for selection of variables was

suggested to determine important predictors. We

chose to use an MSE approach that made use of only

the reference sites and that should result in good

prediction of the metric responses. Application of the

variable selection method to different biological met-

rics may lead to a different set of environmental

variables for each metric. In cases where a set of sites

with known impairment are available, an alternative

method is to use the biological information and a

classification criteria for selection of variables.

As discussed in the Methods section we did not

favour scoring with predictions from linear regres-

sion models. Although a regression approach might

be advantageous when there are strong relationships

we have typically found weak regression relation-

ships for reference data. Yuan & Norton (2003)

noted that this was the case in the Mid-Atlantic

Highlands dataset as the linear regression models

used to obtain their scored response values

explained between 8% and 31% of the variation

in that response. Further, the regression approach

assumes a ‘global’ linear relationship between the

metric and the selected natural variables or stressors

over all reference sites. Although the ANNA (Linke

et al., 2005) approach is based on nearest-neigh-

bours, the distances are based on predicted axis

scores from a global regression. However, if a single

metric is used (rather than non-metric multidimen-

sional scaling scores) and there is a single predictor,

the distances will be the same. Our nearest-neigh-

bour approach assumes neither a linear nor a global

relationship. If one chooses to score with predictions

based on linear regression models fitted to the k

nearest-neighbour reference sites, one would have a

method analogous to local linear regression.

As indicated by the simulated reference data in

Fig. 1, the mean or null approach is clearly inappro-

priate if there is trend in the data. Although the

regression fit was significant (R2 ¼ 0.57), the non-

linearity and heterogeneity of the data indicated the fit

was not good. The nearest-neighbour method does

better at tracking the non-linear relationship and the

heterogeneity of variance in the data. Thus, the

general shape of the nearest-neighbour fit is non-

linear, reflecting the true model and the error band is

wider for higher values of the predictor, reflecting the

increased heterogeneity. While contrived, this exam-

ple demonstrates that if there are local patterns in the

data, then the nearest-neighbour method will use the

pattern to improve the decision.

The low prediction of non-reference test sites

based on the Ephemeroptera richness metric and

pH < 6.0 by the regression method was a result of

patterns in the data that are better described by

the nearest-neighbour method than the regression

approach. Notice in Fig. 3 that a relatively high

percentage of test cases fall inside the error bars for

the regression or null model when AREA is small.

The reason for the higher classification rate for the

nearest-neighbour method lies in differences in

variance estimation. The regression approach as-

sumes constant variance and the estimated variance

is roughly the same across the range of AREA.

Although the regression approach may provide a

good estimate of EPHERICH for sites with small

values of AREA, it does not provide as good an

estimate of the variation. Hence, the predictive

scored metric for the regression approach is not as

extreme on this range of AREA. The nearest-neigh-

bour method measures the variation relative to a
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smaller set of sites and hence results in a smaller

variance estimate and larger scored metrics.

As pointed out by Bailey et al. (2004), error rates are

important when the methods are used in the decision-

making process and for this data, the error rates will

be superior for the nearest-neighbour method.

Although the nominal Type I error rate for all three

prediction methods is the prechosen ‘alpha’ level, the

actual rate depends on the correctness of the assump-

tions, the fit of the model and quality of the variance

estimate. For example, if the regression model is

correct, then the null model which uses a single

reference distribution whose mean does not depend

on the predictor is going to have, in general, a higher

Type I error rate in some regions and a lower error

rate in other regions, as the variance is not adjusted

for the predictor. Thus, for example, the Type I error

for the null model will be greater than alpha when the

predictor is >4 (in Fig. 1, the reference sites labelled

‘A’ that are above the null interval are rejected using

the null method but not the regression method).

Similarly, the Type I error rate for the nearest-

neighbour method will be more accurate than the

null or regression models when those methods do not

adequately describe the data, especially when vari-

ance changes. In Fig. 1, test sites with metrics in the

region labelled ‘C’ would be rejected using the null or

regression method but not the nearest-neighbour

method.

When the nearest-neighbour method is applied

and the regression or null models are correct there

should be only a slight loss in the nearest-neighbour

Type I error rate provided the range in the predictor

is not great and k is not small. Basically, the fit

provided by the nearest-neighbour approach is a

local mean which fits adequately but uses a smaller

sample size. If k is small (around 5) the t-statistic for

the nearest-neighbour method will be noticeably

larger than that for either the null or regression

methods and will result in a small Type I error rate.

If k is larger, the differences in error rates should be

minor.

The Type II error for the nearest-neighbour model

will generally be better when the regression or null

model is incorrect. For example, in Fig. 1 when the

predictor is around 2.5, the points in the region

labelled ‘B’ would not be rejected by the regression

method but would be with the nearest-neighbour

method. This region is larger for the null model which

will have low power for testing sites with predictors

below 3. When the null model is correct, the nearest-

neighbour method will have slightly lower power

than the other models. While exact comparisons are

possible, the difference depends on the values of the

predictors, strength of the regression model as well as

the number of reference sites available and the

number of neighbours used. In general, if the null

model is correct, it will have the greater power, as the

critical value is tN)1(a) and this will be smaller than

the regression critical value of tN)2(a) and the nearest-

neighbour critical value of tk)1(a). Some indication of

the actual error rates that might occur in practice may

be obtained through leave-one-out methods with the

MAHA data.

A natural extension to the proposed approach

[similar to that of Chessman (1999)] would be to

weight the chosen k nearest-neighbours by the inverse

of their HEOM distance from the test site currently of

interest. This involves simple calculations of a weigh-

ted mean and standard deviation and does not greatly

increase the computational complexity of the method.

Such a weighting scheme is used in ANNA (Linke

et al., 2005). Other extensions of the method that are

easy to implement are to use a multivariate nearest-

neighbours approach with multiple metrics and to

extend the formulas to situations with multiple

measurements at the test site (rather than a single

measurement). Another variation of the method is to

base biocriteria and testing on percentiles or equival-

ence (Kilgour et al., 1998; Smith et al., 2003; Bowman &

Somers, 2005). These methods use an equation similar

to eqn (1) but use a non-central t-distribution rather

than a central t-distribution for evaluation. Critical

values for tests using a prediction approach tend to be

smaller than those for a percentile approach so the

prediction approach will be more powerful for

detecting biological difference [see Fig. 3.3 in Hahn

& Meeker (1991)]. An alternative method of evalua-

tion would examine the relationship of the scored

metric values at test sites to known anthropogenic

stressor gradients (Klemm et al., 2003). This recognises

that the test sites in this data set range in quality from

truly degraded to nearly reference quality. We did not

apply such an approach in our example due to the

lack of a moderate to strong pH gradient. The EMAP

data are spatially balanced and hence are not focused

on finding gradients, especially over smaller spatial

scales.
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